Kurvendiskussion

Beispiel:
$$f(x) = \frac{1}{16}x^3 - \frac{3}{8}x^2 + 2$$

1. Ableitungen

Für die spätere Untersuchung bestimmt man die ersten drei Ableitungen: f'(x), f''(x), f'''(x)

Beispiel:
$$f'(x) = \frac{3}{16}x^2 - \frac{3}{4}x$$
, $f''(x) = \frac{3}{8}x - \frac{3}{4}$, $f'''(x) = \frac{3}{8}$

2. Definitionsbereich

Man bestimmt den Definitionsbereich der Funktion, denn nur innerhalb dieses Bereiches ist es sinnvoll, Untersuchungen über die Eigenschaften der Funktion anzustellen.

Beispiel: Es existieren keine Definitionslücken \Rightarrow D=R

3. Symmetrien:

Man stellt fest, ob die Funktion achsensymmetrisch bzgl. der y-Achse oder punktsymmetrisch bzgl. des Ursprungs ist. Bei einer vorliegenden Symmetrie braucht die Funktion nur noch für x≥0 untersucht werden.

Achsensymmetrie: f(-x) = f(x)

Bei ganzrationale Funktionen: Es kommen nur Summanden mit ungeraden Exponenten vor.

Punktsymmetrie: f(-x) = -f(x)

Bei ganzrationale Funktionen: Es kommen nur Summanden mit geraden Exponenten vor.

<u>Beispiel:</u> Es existieren Summanden mit geraden und ungeraden Exponenten \Rightarrow keine Punktsymmetrie zum Ursprung oder Achsensymmetrie bzgl. der y-Achse.

4. Schnittpunkte mit den Achsen:

Man sucht für das spätere Zeichnen des Graphen die Schnittpunkte mit den Achsen. Ggf. eine Nullstelle raten und anschließend eine Polynomdivision durchführen.

Nullstellen:

Nullstellen sind Lösungen der Gleichung f(x) = 0.

Schnittstelle mit der y-Achse:

Bestimme f(0).

<u>Beispiel:</u> $f(x) = 0 \Rightarrow P(-2|0)$ und P(4|0) sind Nullstellen. $f(0) = 2 \Rightarrow P(0|2)$ ist Schnittpunkt mit der y-Achse

5. Verhalten für $x \rightarrow \pm \infty$ bzw. gegen Definitionslücken

Untersuchung der Funktion in den Randpunkten des Definitionsbereichs. Wenn der Definitionsbereich nicht beschränkt ist, dann sind die beiden Grenzwerte $\lim_{x\to\infty} f(x)$ und $\lim_{x\to\infty} f(x)$ zu bestimmen. Das Verhalten wird bei rationalen Funktionen durch den größten Exponenten bestimmt.

Beispiel:
$$\lim_{x \to \infty} f(x) = \infty$$
 und $\lim_{x \to -\infty} f(x) = -\infty$

6. Extrempunkte und Monotonieverhalten

Bestimmen der relativen Extrema (Hochpunkte, Tiefpunkte). Nach den Extremstellen auch die Extrempunkte bestimmen!

Hochpunkt:

f'(x)=0 und $f''(x)<0 \Rightarrow Maximum$

Tiefpunkt:

f'(x)=0 und f''(x)>0 \Rightarrow Minimum

Vorzeichenwechselkriterium:

f '(x)=0 und f ''(x)=0 \Rightarrow Vorzeichenwechsel untersuchen

f'(x) wechselt von + nach - \Rightarrow Wechsel von mon. steigend \rightarrow mon. fallend \Rightarrow Maximum

f '(x) wechselt von – nach + \Rightarrow Wechsel von mon. fallend \rightarrow mon. steigend \Rightarrow Minimum

Monotonie:

f'(x)>0 \Rightarrow monoton steigend

 $f'(x) < 0 \Rightarrow$ monoton fallend

Beispiel: $f'(x) = 0 \Rightarrow x_1 = 0, x_2 = 4$

f " $(0) = -3/4 > 0 \Rightarrow$ Maximum. $f(0) = 2 \Rightarrow$ Maximum bei (0|2)

 $f''(4) = \frac{3}{4} < 0 \Rightarrow Minimum. f(4) = 0 \Rightarrow Minimum bei (4|0).$

7. Wendepunkte und Krümmungsverhalten

Bestimmen der Wendepunkte, bzw. der Sattelpunkte

Wendepunkt:

f''(x)=0 und $f'''(x)\neq 0 \Rightarrow$ Wendepunkt

Sattelpunkt:

f '(x)=0 und f ''(x)=0 und f '''(x) \neq 0 \Longrightarrow Sattelpunkt

Vorzeichenwechselkriterium:

f ''(x)=0 und f '''(x)=0 \Rightarrow Vorzeichenwechsel untersuchen

f'' (x) wechselt von + nach $-\Rightarrow$ Wechsel von linksgekrümmt \rightarrow rechtsgekrümmt

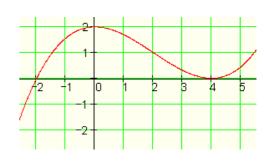
f '' (x) wechselt von – nach $+ \Rightarrow$ Wechsel von rechtsgekrümmt \rightarrow linksgekrümmt

Krümmungsverhalten:

 $f''(x)>0 \Rightarrow linksgekrümmt$

 $f''(x) < 0 \Rightarrow rechtsgekrümmt$

Beispiel: $f''(x) = 0 \Rightarrow x_1 = 2$


f "'(2) = $3/8 \neq 0 \Rightarrow$ Wendestelle. $f(2)=1 \Rightarrow$ Wendepunkt bei (2|1).

Vorzeichenwechsel: f'' (x) wechselt von – nach + \Rightarrow rechtsgekrümmt \rightarrow linksgekrümmt

8. Graph zeichnen

Mit allen bisher gesammelten Informationen lässt sich in den meisten Fällen nun der Graph zeichnen. Ggf. kann eine ergänzende Wertetabelle angelegt werden.

Beispiel: siehe Graph

