Kugeln

Eine Kugel mit dem Mittelpunkt M ($m_1 | m_2 | m_3$) und dem Radius r wird durch die

Vektorgleichung: $[\vec{x} - \vec{m}]^2 = r^2$

bzw. durch die

Koordinatengleichung $(x_1 - m_1)^2 + (x_2 - m_2)^2 + (x_3 - m_3)^2 = r^2$

beschrieben.

Lagebeziehungen von Kugeln

Kugel und Punkt

Sei eine Kugel K: $[\vec{x} - \vec{m}]^2 = r^2$ mit Mittelpunkt M und Radius r, sowie ein Punkt P gegeben.

Vorgehen:

- Bestimme die Länge d = \overrightarrow{MP} und überprüfe mit Hilfe der folgenden Tabelle

Lagebeziehung	Punkt liegt außerhalb von K	Punkt liegt auf K	Punkt liegt innerhalb von K
Skizze	d × p	d P	P _x d
Überprüfung	d > r	d = r	d < r

Kugel und Gerade

Sei eine Kugel K: $[\vec{x}-\vec{m}]^2=r^2$ mit Mittelpunkt M und Radius r, sowie eine Gerade g: $\vec{x}=\vec{p}+t\cdot\vec{u}$ gegeben.

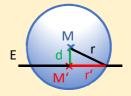
Vorgehen:

- Setze die Gerade in die Kugelgleichung ein: $[\vec{p} + t \cdot \vec{u} \vec{m}]^2 = r^2$
- Löse die quadratische Gleichung und überprüfe mit Hilfe der folgenden Tabelle
- Die Lösung für t in die Geradengleichung einsetzen und Schnittpunkt(e) ermitteln

Lagebeziehung	Gerade läuft außerhalb von K	Gerade berührt K	Gerade schneidet K
Skizze	go	g	gg r
Überprüfung	Die Gleichung hat keine Lösung.	Die Gleichung hat eine Lösung.	Die Gleichung hat zwei Lösungen.

Kugel und Ebene

Sei eine Kugel K: $[\vec{x}-\vec{m}]^2=r^2$ mit Mittelpunkt M und Radius r, sowie eine Ebene E E: $(\vec{x}-\vec{p})\cdot\vec{n}=0$ gegeben.


Vorgehen:

- Bestimme den Abstand d des Kugel-Mittelpunktes von der Ebene und überprüfe mit Hilfe der folgenden Tabelle

Lagebeziehung	Ebene hat keinen gem. Punkt mit K	Ebene berührt K	Ebene schneidet K
Skizze	LXdE	r d E	T X L
Überprüfung	d > r	d = r	d <r< th=""></r<>

Im Falle eines Schnittes ergibt sich ein Schnittkreis. Hier gilt:

- Mittelpunkt M' = Lotfußpunkt L (von M auf E)
- Radius r' = $\sqrt{r^2-d^2}$

Kugel und Kugel

Seien zwei Kugeln K₁: $[\vec{x} - \overrightarrow{m_1}]^2 = r_1^2$ mit Mittelpunkt M₁ und Radius r₁ und K₂: $[\vec{x} - \overrightarrow{m_2}]^2 = r_2^2$ mit Mittelpunkt M₂ und Radius r₂ gegeben.

Vorgehen:

- Bestimme den Abstand der beiden Mittelpunkte d = $\overrightarrow{M_1M_2}$
- Überprüfe mit Hilfe der folgenden Tabellen

Lagebeziehung	auseinander	außen berührend	schneidend
Skizze	r ₁ d V _{r₂}	d	B
Überprüfung	d > r ₁ + r ₂	$d = r_1 + r_2$	$d < r_1 + r_2$ $\frac{und}{d > r_1 - r_2 }$

Lagebeziehung	innen berührend	ineinander	konzentrisch
Skizze			
Überprüfung	$d = r_1 - r_2 $	$d < r_1 - r_2 $	d = 0

www.schlauistwow.de